

On predicting 3D bone locations inside the human body

- ¹ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, France
 ² Max Planck Institute for Intelligent Systems, Germany
- * Equal contribution

Context

Objective: Predict The location of internal

structures from external surface observations.

Experiments & Results

Bone registration accuracy

Innin -

Previous approaches & applications:

- 1. Traditional approaches: Medical imaging (CT scan X Ray) → Radiation.
- 2. Learning based: OSSO[1] from 2D DXA images, SKEL[2] for synthetic biomechanics simulation with MoCap data \rightarrow Lacks 3D information.

Our approach: Leverage the HIT[3] MRI dataset to create accurate 3D skeletal data to learn a better regressor for SKEL.

Contributions:

- **1. Multi bone** segmentation data set w/ ground truth SKEL registrations.
- 2. A specialized registration method and regressor.
 - 1. An additional degree of freedom ΔJ to the skeleton from skin prediction.
 - 2. A trained joint regressor to replace standard SKEL based on 3D data.

1) The HIT Multi-bone Dataset

Bone prediction accuracy

An MRI multi-bone dataset: 381 full body MRIs (235 females, 146 males) of **5** bone sub-groups (humerus, radius-ulna, pelvis, femur, and tibia-fibula).

(2) Registration Process and SKEL-J

Optimization

NALAN AND AND AND AND AND AND AND AND AND A			D) CARASSER
HIT	OSSO	SKEL	SKEL-J

References

[1] OSSO: Obtaining Skeletal Shape from Outside. *Keller, Zuffi, Black and Pujades (CVPR 2022).*[2] From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans. *Keller, Werling, Shin, Delp, Pujades, Liu and Black (ACM siggraph Asia 2024).*[3] HIT: Estimating Internal Human Implicit Tissues from the Body Surface. *Keller, Arora, Dakri, Chandhok, Machann, Fritsche, Black and Pujades (CVPR 2024).*